Theory:

Now, we shall find the perimeter of a rectangle.
 
apd-w300.png
 
Let us consider a rectangle \(ABCD\) whose length is \(l\) \(units\) and breadth is \(b\) \(units\).
 
Then, the perimeter of the rectangle is given by:
Perimeter of the rectangle \(=\) Sum of the measures of all four sides
Perimeter \(P =AB+BD+DC+CA\) \(units\)
 
\(P=l+b+l+b\) \(units\)
  
\(P= 2l+2b\) \(units\)
  
\(P=2(l+b)\) \(units\)
  
Thus, the perimeter of the rectangle is \(2(l+b)\) \(units\).
Example:
1. The length of the rectangle is \(5 \ cm\), and breadth of the rectangle is \(3 \ cm\). Find the perimeter of the rectangle.
 
Solution:
 
The length of the rectangle is \(l=5 \ cm\).
 
The breadth of the rectangle is \(b=3 \ cm\).
 
Perimeter of the rectangle \(=\) Sum of the measures of all four sides
 
Perimeter, \(P=2(l+b)\)
 
Substituting the values in the formula, we have:
 
\(P=2\times(5+3)\) \(cm\)
 
\(P=2\times(8)\) \(cm\)
 
\(P=16 \ cm\)
 
Thus, the perimeter of the rectangle is \(16 \ cm\).