Login
Login
Sign up
Start
Teacher tutorials
TOP
Subjects
Testworks
Subject updates
Ya+ Subscription
News
Send feedback
See more
Contacts
About Us
Terms and Conditions
Privacy Policy
Topic quality check is in process.
Click here and write a feedback if you want us to improve it
Send feedback
Subjects
Mathematics CBSE
Class 9
Polynomials
Algebraic Identities [DRAFT]
6.
Cubic identity for three variables
Theory:
Identity
\(VIII\):
a
3
+
b
3
+
c
3
−
3
abc
=
a
+
b
+
c
a
2
+
b
2
+
c
2
−
ab
−
bc
−
ac
\(21x^3 + 8y^3 + z^3 - 12xyz\)
Let us write the expression as \(21x^3 + 8y^3 + z^3 - 12xyz\).
Using the identity
\(VIII\):
a
3
+
b
3
+
c
3
−
3
abc
=
a
+
b
+
c
a
2
+
b
2
+
c
2
−
ab
−
bc
−
ac
21x
3
+
8y
3
+
z
3
−
12
xyz
=
3
x
+
2
y
+
z
9x
2
+
4y
2
+
z
2
−
(
3x
)
(
2y
)
−
(
2y
)
(
z
)
−
(
3
x
)
(
z
)
21x
3
+
8y
3
+
z
3
−
12
xyz
=
3
x
+
2
y
+
z
3x
2
+
2y
2
+
z
2
−
6
xy
−
2
yz
−
3
xz
Important!
If
a
3
+
b
3
+
c
3
=
0
Then,
a
3
+
b
3
+
c
3
−
3
abc
=
a
+
b
+
c
a
2
+
b
2
+
c
2
−
ab
−
bc
−
ac
We know that,
a
3
+
b
3
+
c
3
=
0
a
3
+
b
3
+
c
3
−
3
abc
=
0
a
2
+
b
2
+
c
2
−
ab
−
bc
−
ac
a
3
+
b
3
+
c
3
−
3
abc
=
0
a
3
+
b
3
+
c
3
=
3
abc
Previous theory
Exit to the topic
Next exercise
Send feedback
Did you find an error?
Send it to us!