Theory:

The volume of the solid formed by combining two more solids is obtained by simply calculating the volume of the individual solids and adding them.
 
Suppose a solid is in the form of a cone surmounted on a hemisphere, then its volume is given by the sum of the volume of the cone and the hemisphere.
 
Let us discuss an example to understand the concept better.
Example:
The interior of the glass is in the form of a cylinder surmounted on a hemisphere has a uniform radius of \(4\) \(cm\) and the height of the cylindrical part is \(7\) \(cm\). Find the capacity of the glass.
 
shutterstock_1997928737.jpg
 
Solution:
 
The volume of the glass \(=\) Volume of the hemisphere \(+\) Volume of the cylinder
 
Volume of the glass \(=\) \(\frac{2}{3} \pi r^3 \) \(+\) \(\pi r^2 h\)
 
\(=\)  \(\left[\frac{2}{3} \times \frac{22}{7} \times (4)^3\right]\) \(+\) \(\left[\frac{22}{7} \times (4^2) \times 7 \right]\)
 
\(=\)  \(\left[\frac{2}{3} \times \frac{22}{7} \times 64\right]\) \(+\) \(\left[\frac{22}{7} \times 16 \times 7 \right]\)
 
\(=\) \(134.1\) \(+\) \(352\)
 
\(=\)  \(486.1\) \(cm^3\)
 
Therefore, the capacity of the glass is \(486.1\) \(cm^3\).