### Theory:

Area:
To calculate the area of a parallelogram, we multiply the base($$b$$) times the height($$h$$).

Area of parallelogram $$A = b × h$$ square units.

For example, A parallelogram has a base of $$6 m$$ and height of $$3 m$$. Find its Area?

base $$(b)=6\ m$$ and height $$(h) = 3\ m$$.

Area$\left(A\right)\phantom{\rule{0.147em}{0ex}}=\phantom{\rule{0.147em}{0ex}}b×h\phantom{\rule{0.147em}{0ex}}=6\phantom{\rule{0.147em}{0ex}}m\phantom{\rule{0.147em}{0ex}}×\phantom{\rule{0.147em}{0ex}}3\phantom{\rule{0.147em}{0ex}}m\phantom{\rule{0.147em}{0ex}}=\phantom{\rule{0.147em}{0ex}}18\phantom{\rule{0.147em}{0ex}}{m}^{2}.$
Base:
To calculate the base of the parallelogram, we divide area $$A$$ by height $$h$$.

Base of parallelogram ($$b$$) $$= A/h$$ unit.

For example, A parallelogram has an area of $$64 m²$$, and is $$4 m$$ height, what is its base?

Area $$(A)=64\ m^2$$ and height $$(h)=4\ m$$.

Base$\left(b\right)=\phantom{\rule{0.147em}{0ex}}\frac{A}{h}=\frac{64}{4}=\phantom{\rule{0.147em}{0ex}}16\phantom{\rule{0.147em}{0ex}}m.$
Height:
To calculate the height of the parallelogram, we divide the area $$A$$ by base $$b$$.

Height of parallelogram ($$h$$) $$= A/b$$ unit.

For example, A parallelogram has an area of $$64 m²$$ and base is $$16 m$$. Find its height?

Area $$(A)=64\ m^2$$ and base $$(b)=16\ m$$

Height$\left(h\right)=\phantom{\rule{0.147em}{0ex}}\frac{A}{b}=\frac{64}{16}=\phantom{\rule{0.147em}{0ex}}4\phantom{\rule{0.147em}{0ex}}m.$
Perimeter:
To calculate the perimeter of a parallelogram, we multiply $$2$$ times the (base + side length).

Perimeter of parallelogram ($$P$$) $$= 2 (b + l)$$.

Where $$b$$ is denoted as base and $$l$$ is denoted as side length.

For example, A parallelogram has a base of $$5 m$$ and length of $$3 m$$. Find its perimeter?

Base $$(b)=5\ m$$ and side length $$(l)=3\ m$$.

Perimeter$=\phantom{\rule{0.147em}{0ex}}2\left(b+l\right)=2\left(5+3\right)=2\left(8\right)=16\phantom{\rule{0.147em}{0ex}}m.$