Theory:

While division of 2 integers, depending upon the sign of the two or more than two numbers involved, the answer can change.
  
i2.jpg
  
1. Division on positive signs:
In division operation, when both numerator and denominator are positive numbers, the result will also be positive \((+ve)/(+ve) = +ve\).
Example:
1.  966 \(=\) 16
 
2.  4866 \(=\) 81
 
3.  6606 \(=\) 110
 
4.  255 \(=\) 5
2. Division on negative signs:
A negative number divided by another negative number will result in a positive number \((-ve)/(-ve)=+ve\).
Example:
1. -16-3 \(=\) 5
 
2. -144-84 \(=\) 2
 
3. -11-2 \(=\) 6
 
4. −10−1 \(=\) 10
3. Division on different signs:
In division operation, when numerator and denominator have different signs, the result will have a negative sign \((-ve)/(+ve) = -ve\).
Example:
1. -1446 \(=\) −24
 
2. -846 \(=\) −14
 
3. 100−1 \(=\) −100
 
4. 50−5 \(=\) −10
Division on zero:
Any integer \(/\) \(0 =\) infinite or cannot be determined because still, researches are going on to find out what will be the result when an integer is divided by zero, an approximation cannot be taken out.
Example:
1. 400 \(=\) infinite or cannot be determined.
 
2. -4130 \(=\) infinite or cannot be determined.