Get A+ with YaClass!
Register now to understand any school subject with ease and get great results on your exams!

### Theory:

Division:

Let's learn, how to deal with the division of more than $$2$$ numbers, $$a,b,c$$ are three numbers, $$(a/b)/c$$ should be evaluated as $$a/(b×c)$$.
Example:
$\begin{array}{l}1.\phantom{\rule{0.147em}{0ex}}\frac{1/2}{3}=\frac{1}{2×3}=\frac{1}{6}\\ \\ 2.\phantom{\rule{0.147em}{0ex}}\frac{2/6}{5}=\frac{2}{5×6}=\frac{2}{30}\end{array}$
Let $$a,b,c,d$$ are four numbers, and $$(a/b)/(c/d)$$ should be evaluated as $$(a×d)/(b×c)$$.
Example:
$\begin{array}{l}1.\phantom{\rule{0.147em}{0ex}}\frac{5/2}{3/6}=\frac{5×6}{3×2}=\frac{30}{6}\\ \\ 2.\phantom{\rule{0.147em}{0ex}}\frac{2/6}{5/2}=\frac{2×2}{5×6}=\frac{4}{30}\\ \\ 3.\phantom{\rule{0.147em}{0ex}}\frac{2/4}{6/2}=\frac{2×2}{6×4}=\frac{4}{24}\end{array}$
Similar to multiplication, when more than $$2$$ numbers are involved, depending upon the number of negative numbers involved, the sign of the answer varies.
 Number of negative integers in division Sign of the result Even $$(+)$$ Odd $$( - )$$

Example:
$\begin{array}{l}1.\phantom{\rule{0.147em}{0ex}}\frac{-5/\left(-2\right)}{-2/8}=\frac{-5×8}{-2×\left(-2\right)}=\frac{-40}{4}\\ \\ 2.\phantom{\rule{0.147em}{0ex}}\frac{-8/\left(-6\right)}{2/4}=\frac{-8×4}{-6×2}=\frac{-32}{-12}=\frac{32}{12}\\ \\ 3.\phantom{\rule{0.147em}{0ex}}\frac{-9/1}{-1/6}=\frac{-9×6}{-1×1}=\frac{-54}{-1}=\frac{54}{1}\\ \\ 4.\phantom{\rule{0.147em}{0ex}}\frac{-1/2}{1/2}=\frac{-1×2}{1×2}=\frac{-2}{2}=-1\\ \\ 5.\phantom{\rule{0.147em}{0ex}}\frac{\frac{-1}{2}}{2}=\frac{-1}{2×2}=\frac{-1}{4}\end{array}$