### Theory:

Steps to find the square root of a number:
Step 1: Write the given natural number as a product of prime factors.

Step 2: Group the factors in pairs so that both factors in each pair are equal.

Step 3: Now, see whether some factors are leftover or not. If no factor is leftover in grouping, then the given number is a perfect square. Otherwise, it is not a perfect square.

Step 4: Take one factor from each group and multiply them to obtain the number whose square is the given number.
Let's see an example to understand this concept clear.
Example:
Find $$\sqrt{324}$$.

We need to find the value of $$\sqrt{324}$$.

Step 1: Write $$324$$ as a product of prime factors.

$\begin{array}{l}\underset{¯}{2|324\phantom{\rule{0.147em}{0ex}}}\\ \underset{¯}{2|162\phantom{\rule{0.147em}{0ex}}}\\ \underset{¯}{3|81\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.294em}{0ex}}}\\ \underset{¯}{3|27\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}}\\ \underset{¯}{3|9\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.294em}{0ex}}}\\ \underset{¯}{3|3\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.294em}{0ex}}}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}|1\end{array}$

$$324 = 2 \times 2 \times 3 \times 3 \times 3 \times 3$$

Step 2: Group the prime factors.

$$324 = (2 \times 2) \times (3 \times 3) \times (3 \times 3)$$

Step 3: Here, no factor is leftover in grouping.

So, the given number is a perfect square.

Step 4: Now, take one factor commonly from each group.

$$\sqrt{324}$$ $$=$$ $$2 \times 3 \times 3$$

$$\sqrt{324}$$ $$=$$ $$18$$

Therefore, the square root of $$\sqrt{324}$$ is $$18$$.