UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more### Theory:

Quadrants:

- The \(x\)-axes and \(y\)-axes divided the cartesian plane into four infinite regions with equal distance from the origin and bordered by two axes.
- These are called quadrants. Quadrants divide the cartesian plane into \(4\) equal parts. They are usually numbered in anticlockwise direction starting from the region bounded by positive \(x\) and \(y\)-axis (that is \(OX\)).

Quadrant I:

- Any point located in quadrant \(I\) will have a positive number in the \(x\)-axis and \(y\)-axis.
- It can be represented as \(( x, y)\), where \(x\) and \(y\) represent the distance of a point from the origin horizontally and vertically.

Example:

\((2,3)\), \((6,10)\), \((9,12)\)

Quadrant II:

- Any point located in quadrant \(II\) will have a negative number in the \(x\)-axis and positive number in \(y\)-axis.
- It can be represented as \((-x, y)\), where \(x\) and \(y\) represent the distance of the point from the origin horizontally and vertically.

Example:

\((-3,6)\), \((-2,5)\), \((-15,12)\)

Quadrant III:

- Any point located in quadrant \(III\) will have a negative number in the \(x\)-axis and \(y\)-axis.
- It can be represented as \(( -x, -y)\), where \(x\) and \(y\) represent the distance of the point from the origin horizontally and vertically.

Example:

\((-5,-6)\), \((-2,-1)\), \((-8,-10)\)

Quadrant IV:

- Any point located in quadrant \(IV\) will have a positive number in the \(x\)-axis and negative number in \(y\)-axis.
- It can be represented as \((x, -y)\), where \(x\) and \(y\) represent the distance of the point from the origin horizontally and vertically.

Example:

\((1,-3)\), \((3, -4)\), \((7,-1)\)