### Theory:

Solved examples to find the area
1. Calculate the area of $$5$$ squares having the sides of $$2\ m$$ each.

Side ($$a$$) $$=$$ $$2\ m$$

$\begin{array}{l}\mathit{Area}\phantom{\rule{0.147em}{0ex}}\mathit{of}\phantom{\rule{0.147em}{0ex}}a\phantom{\rule{0.147em}{0ex}}\mathit{square}=a×a\\ \\ =2×2\\ \\ =4\phantom{\rule{0.147em}{0ex}}{m}^{2}\\ \\ \mathit{Area}\phantom{\rule{0.147em}{0ex}}\mathit{of}\phantom{\rule{0.147em}{0ex}}5\phantom{\rule{0.147em}{0ex}}\mathit{squares}=4\phantom{\rule{0.147em}{0ex}}{m}^{2}×5\\ \\ =20\phantom{\rule{0.147em}{0ex}}{m}^{2}\end{array}$

The area of $$5$$ squares on each side of $$2\ m$$ is $$20\ m^2$$.

2. Calculate the area of a rectangle of $$20\ m$$ length and $$8\ m$$ breadth.

Length $$=$$ $$20\ m$$

Breadth $$=$$ $$8\ m$$

$\begin{array}{l}\mathit{Area}\phantom{\rule{0.147em}{0ex}}\mathit{of}\phantom{\rule{0.147em}{0ex}}\mathit{rectangle}=l×b\\ \\ =20\phantom{\rule{0.147em}{0ex}}×\phantom{\rule{0.147em}{0ex}}8\\ \\ =160\phantom{\rule{0.147em}{0ex}}{m}^{2}\end{array}$

Therefore, the area of the rectangle is $$160$$ $$m^2$$.

3. Find the area of a circle whose radius is $$6\ m$$. Take $\mathrm{\pi }=\frac{22}{7}$ and round off the answer to two decimal places.

Radius ($$r$$) $$=$$ $$6\ m$$

$\begin{array}{l}\mathit{Area}\phantom{\rule{0.147em}{0ex}}\mathit{of}\phantom{\rule{0.147em}{0ex}}\mathit{circle}=\mathrm{\pi }×{r}^{2}\\ \\ =\frac{22}{7}×6×6\\ \\ =113.14\phantom{\rule{0.147em}{0ex}}{m}^{2}\end{array}$

The circle having a radius of $$6\ m$$ has an area of $$113.14$$ $$m^2$$.

4. Determine the area of a triangle whose base is $$4\ m$$ and height is $$6\ m$$.

Base $$b$$ $$=$$ $$4\ m$$

Height $$h$$ $$=$$ $$6\ m$$

The area of the triangle is found to be $$12$$ $$m^2$$.