### Theory:

General rules to subtract decimal numbers:
Step 1: Line up the decimal numbers one by one.

Step 2: Equalize the number of decimal places by adding zeros at the rightmost side of the decimal number.

Step 3: Start subtracting from the rightmost digit of the decimal number as the normal subtraction.

Step 4: Subtract both decimal part and whole number part.

Step 5: Finally, put a decimal point in the answer in the same place as the numbers above it.
Example:
Subtract $$94.56$$ from $$156.60$$.

$\begin{array}{l}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}156.60\\ \underset{¯}{-\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}94.56\phantom{\rule{0.147em}{0ex}}}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}62.04\phantom{\rule{0.147em}{0ex}}\end{array}$

The answer is $$62.04$$.
Example:
Find the difference between $$462.057$$ and $$351.542$$.

$\begin{array}{l}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}462.057\\ \underset{¯}{-\phantom{\rule{0.147em}{0ex}}351.542}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}111.515\end{array}$

Therefore, the difference between $$462.057$$ and $$351.542$$ is $$111.515$$.