### Theory:

Changing the order of the whole numbers does not change the value of the result or the sum. This is called the commutative property of whole numbers.
This property applies to both addition and multiplication.
While adding (or) multiplying two whole numbers, changing the order of the whole numbers will not change the result.
Consider $$a$$ and  $$b$$ are two whole numbers then:

$\begin{array}{l}\left(\phantom{\rule{0.147em}{0ex}}a+b\phantom{\rule{0.147em}{0ex}}\right)\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}=\phantom{\rule{0.147em}{0ex}}\left(\phantom{\rule{0.147em}{0ex}}b+a\phantom{\rule{0.147em}{0ex}}\right)\\ \\ \left(\phantom{\rule{0.147em}{0ex}}a×b\phantom{\rule{0.147em}{0ex}}\right)\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}=\phantom{\rule{0.147em}{0ex}}\left(\phantom{\rule{0.147em}{0ex}}b×a\phantom{\rule{0.147em}{0ex}}\right)\end{array}$
Example:
i) .

ii) $$10 × 2 = 2 × 10 = 20$$.
Remember that commutative property does not apply to subtraction and division.
While subtracting or dividing two whole numbers, changing the order of the whole numbers will change the result.
Consider $$a$$ and  $$b$$ are two whole numbers then:

$\begin{array}{l}\left(\phantom{\rule{0.147em}{0ex}}a-b\phantom{\rule{0.147em}{0ex}}\right)\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}=\phantom{\rule{0.147em}{0ex}}\left(\phantom{\rule{0.147em}{0ex}}b-a\phantom{\rule{0.147em}{0ex}}\right)\\ \\ \left(\phantom{\rule{0.147em}{0ex}}a÷b\phantom{\rule{0.147em}{0ex}}\right)\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}=\phantom{\rule{0.147em}{0ex}}\left(\phantom{\rule{0.147em}{0ex}}b÷a\phantom{\rule{0.147em}{0ex}}\right)\end{array}$
Example:
i) $$( 10 - 5 ) ≠ ( 5 - 10)$$.

ii) $$( 10 ÷ 5 ) ≠ ( 5 ÷ 10)$$.