### Theory:

Regardless of the base value of the step with the lever$$1$$ assumes a number equal to the given base: ${a}^{1}=a.$
Example:
${\left(\frac{5}{8}\right)}^{1}=\frac{5}{8}$

${\left(-14\right)}^{1}=-14$

$\begin{array}{l}{1}^{1}=1\\ \\ {\left(-1\right)}^{1}=-1\phantom{\rule{0.147em}{0ex}}\\ \phantom{\rule{0.147em}{0ex}}\\ {0}^{1}=0\end{array}$
Important!
On the degree of the figure with the lever $$0$$ accept the number $$1$$: ${a}^{0}=1.$
The exception is degree ${0}^{0}$ that doesn't make any sense.

${3}^{0}=1$

${\left(7.5\right)}^{0}=1$

${\left(-8\frac{1}{6}\right)}^{0}=1$

$\begin{array}{l}{1}^{0}=1\\ \\ {\left(-1\right)}^{0}=1\end{array}$
Important!
Numbers $$1,$$ stepping up to any degree is $$1.$$
$\begin{array}{l}{1}^{n}=1,\phantom{\rule{0.147em}{0ex}}n-\mathit{any}\phantom{\rule{0.147em}{0ex}}\mathit{number}.\\ \\ {1}^{1}={1}^{33}={1}^{199}={1}^{1000}=1\end{array}$

Reference:
Mathematics Handbook for Students / J. Mencis, A. Sika - Riga: The Star, 1990. pp. 96-98.