### Theory:

"When dividing a number with a decimal, the decimal point is dropped. But in the dividend, it is moved as many digits to the right of the decimal number in the divisor. It is then divided by an integer."
 $\begin{array}{l}\underset{¯}{\phantom{\rule{0.147em}{0ex}}24.064:0.8}=30.08\\ \underset{¯}{\begin{array}{l}240.64:8\\ 240\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\end{array}}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}64\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\underset{¯}{\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}64}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}0\end{array}$ For the divisor ($$0.8$$) the point is dropped, so the divisor ($$24.064$$) moves the point to the right by $$1$$ digit. $$24.064: 0.8 = 240.64: ​​8 = 30.08$$ $\begin{array}{l}\underset{¯}{115.5:0.33}=350\\ 11550:33\\ \underset{¯}{\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}99\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}165\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\underset{¯}{165}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}0\end{array}$ For the divisor ($$0.33$$) the point is dropped, so in the dividend, the point is moved to the right by $$2$$ digits (if point disappears, add zero at the end). $$115.5: 0.33 = 11550 33 = 350$$ $\begin{array}{l}\underset{¯}{\phantom{\rule{0.147em}{0ex}}61.6605:55.5}=1.111\\ \underset{¯}{\begin{array}{l}616.605:555\\ 555\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\end{array}}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}616\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\underset{¯}{555\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}610\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\underset{¯}{555\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}555\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\underset{¯}{555}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}0\end{array}$ In the divisor ($$55.5$$) the point is dropped. so in the dividend, the point is moved to the right by $$1$$ digit. $$61.6605: 55.5 = 616.605: 555=1.111$$