Theory:

Hemisphere:
A one half of a sphere is called a hemisphere.
Volume of a hemisphere:
Let \(r\) be the radius of a sphere.
 
Volume of hemisphere \(=\) 12 \(\times\) Volume of a sphere
 
\(=\) 12×43πr3
 
\(=\) 23πr3
 
Volume of a hemisphere \(=\) 23πr3 cu. units
 
shutterstock_1885390273 (1).jpg
Example:
The radius of the hemisphere is \(14 \ cm\). Find the volume of the hemisphere in gram if \(1 \ cm^3 = 0.4 \ g\).
 
Solution:
 
Radius of the hemisphere \((r)\) \(=\) \(14 \ cm\)
 
Volume of the hemisphere \(=\) 23πr3 cu. units
 
\(=\) 23×227×143
 
\(=\) 23×227×14×14×14
 
\(=\) \(5749.33\) \(cm^3\)
 
Now, convert \(cm^3\) to \(g\).
 
\(1 \ cm^3\) \(=\) \(0.4 \ g\)
 
\(5749.33 \ cm^3\) \(=\) \(5749.33 \times 0.4\) \(=\) \(2299.732 \ g\)
 
Therefore, the volume of the hemisphere is \(2299.732 \ g\).
Important!
The value of \(\pi\) should be taken as 227 unless its value shared in the problem.