PUMPA - THE SMART LEARNING APP

Take a 10 minutes test to understand your learning levels and get personalised training plan!

Download now on Google Play
Important!
Let us recall difference of two sets.
For any three sets \(A\), \(B\) and \(C\):
 
(i) \(A - (B \cup C)\) \(=\) \((A-B) \cap (A-C)\)
 
(ii) \(A - (B \cap C)\) \(=\) \((A-B) \cup (A-C)\)
Example:
1. Let \(A\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\), \(B\) \(=\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\) and \(C\) \(=\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\).
 
Verify that \(A - (B \cup C)\) \(=\) \((A-B) \cap (A-C)\).
 
L.H.S: \(A - (B \cup C)\)
 
\(B \cup C\) \(=\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\) \(\cup\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\)
 
\(B \cup C\) \(=\) \(\{-3\), \(-1\), \(0\), \(1\), \(3\), \(4\), \(5\}\)
 
\(A - (B \cup C)\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-3\), \(-1\), \(0\), \(1\), \(3\), \(4\), \(5\}\)
 
\(A - (B \cup C)\) \(=\) \(\{-5\), \(-4\), \(2\}\) - - - - - (I)
 
R.H.S: \((A-B) \cap (A-C)\)
 
\(A-B\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\)
 
\(A-B\) \(=\) \(\{-5\), \(-4\), \(2\}\)
 
\(A-C\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\)
 
\(A-C\) \(=\) \(\{-5\), \(-4\), \(0\), \(2\}\)
 
\((A-B) \cap (A-C)\) \(=\) \(\{-5\), \(-4\), \(2\}\) \(\cap\) \(\{-5\), \(-4\), \(0\), \(2\}\)
 
\((A-B) \cap (A-C)\) \(=\) \(\{-5\), \(-4\), \(2\}\) - - - - - (II)
 
From (I) and (II), we see that:
 
\(A - (B \cup C)\) \(=\) \((A-B) \cap (A-C)\).
 
Hence verified.
 
 
2. Let \(A\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\), \(B\) \(=\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\) and \(C\) \(=\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\).
 
Verify that \(A - (B \cap C)\) \(=\) \((A-B) \cup (A-C)\).
 
L.H.S: \(A - (B \cap C)\)
 
\(B \cap C\) \(=\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\) \(\cap\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\)
 
\(B \cap C\) \(=\) \(\{\)\(-1\), \(1\), \(4\)\(\}\)
 
\(A - (B \cap C)\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{\)\(-1\), \(1\), \(4\)\(\}\)
 
\(A - (B \cap C)\) \(=\) \(\{-5\), \(-4\), \(0\), \(2\}\) - - - - - (I)
 
R.H.S: \((A-B) \cup (A-C)\)
 
\(A-B\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\)
 
\(A-B\) \(=\) \(\{-5\), \(-4\), \(2\}\)
 
\(A-C\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\)
 
\(A-C\) \(=\) \(\{-5\), \(-4\), \(0\), \(2\}\)
 
\((A-B) \cup (A-C)\) \(=\) \(\{-5\), \(-4\), \(2\}\) \(\cup\) \(\{-5\), \(-4\), \(0\), \(2\}\)
 
\((A-B) \cup (A-C)\) \(=\) \(\{-5\), \(-4\), \(0\), \(2\}\) - - - - - (II)
 
From (I) and (II), we see that:
 
\(A - (B \cap C)\) \(=\) \((A-B) \cup (A-C)\).
 
Hence verified.
Important!
L.H.SLeft Hand Side
 
R.H.S – Right Hand Side