PUMPA - THE SMART LEARNING APP
Take a 10 minutes test to understand your learning levels and get personalised training plan!
Download now on Google PlayImportant!
Let us recall difference of two sets.
For any three sets \(A\), \(B\) and \(C\):
(i) \(A - (B \cup C)\) \(=\) \((A-B) \cap (A-C)\)
(ii) \(A - (B \cap C)\) \(=\) \((A-B) \cup (A-C)\)
Example:
1. Let \(A\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\), \(B\) \(=\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\) and \(C\) \(=\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\).
Verify that \(A - (B \cup C)\) \(=\) \((A-B) \cap (A-C)\).
L.H.S: \(A - (B \cup C)\)
\(B \cup C\) \(=\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\) \(\cup\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\)
\(B \cup C\) \(=\) \(\{-3\), \(-1\), \(0\), \(1\), \(3\), \(4\), \(5\}\)
\(A - (B \cup C)\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-3\), \(-1\), \(0\), \(1\), \(3\), \(4\), \(5\}\)
\(A - (B \cup C)\) \(=\) \(\{-5\), \(-4\), \(2\}\) - - - - - (I)
R.H.S: \((A-B) \cap (A-C)\)
\(A-B\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\)
\(A-B\) \(=\) \(\{-5\), \(-4\), \(2\}\)
\(A-C\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\)
\(A-C\) \(=\) \(\{-5\), \(-4\), \(0\), \(2\}\)
\((A-B) \cap (A-C)\) \(=\) \(\{-5\), \(-4\), \(2\}\) \(\cap\) \(\{-5\), \(-4\), \(0\), \(2\}\)
\((A-B) \cap (A-C)\) \(=\) \(\{-5\), \(-4\), \(2\}\) - - - - - (II)
From (I) and (II), we see that:
\(A - (B \cup C)\) \(=\) \((A-B) \cap (A-C)\).
Hence verified.
2. Let \(A\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\), \(B\) \(=\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\) and \(C\) \(=\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\).
Verify that \(A - (B \cap C)\) \(=\) \((A-B) \cup (A-C)\).
L.H.S: \(A - (B \cap C)\)
\(B \cap C\) \(=\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\) \(\cap\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\)
\(B \cap C\) \(=\) \(\{\)\(-1\), \(1\), \(4\)\(\}\)
\(A - (B \cap C)\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{\)\(-1\), \(1\), \(4\)\(\}\)
\(A - (B \cap C)\) \(=\) \(\{-5\), \(-4\), \(0\), \(2\}\) - - - - - (I)
R.H.S: \((A-B) \cup (A-C)\)
\(A-B\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\)
\(A-B\) \(=\) \(\{-5\), \(-4\), \(2\}\)
\(A-C\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\)
\(A-C\) \(=\) \(\{-5\), \(-4\), \(0\), \(2\}\)
\((A-B) \cup (A-C)\) \(=\) \(\{-5\), \(-4\), \(2\}\) \(\cup\) \(\{-5\), \(-4\), \(0\), \(2\}\)
\((A-B) \cup (A-C)\) \(=\) \(\{-5\), \(-4\), \(0\), \(2\}\) - - - - - (II)
From (I) and (II), we see that:
\(A - (B \cap C)\) \(=\) \((A-B) \cup (A-C)\).
Hence verified.
Important!
L.H.S – Left Hand Side
R.H.S – Right Hand Side