Теория:

Here are the degrees of prime numbers that are often used:
 
\(n\)
\(1\)
\(2\)
\(3\)
\(4\)
\(5\)
\(6\)
\(7\)
\(8\)
\(9\)
\(10\)
2n
\(2\)
\(4\)
\(8\)
\(16\)
\(32\)
\(64\)
\(128\)
\(256\)
\(512\)
\(1024\)
3n
\(3\)
\(9\)
\(27\)
\(81\)
\(243\)
\(729\)
-
-
-
-
5n
\(5\)
\(25\)
\(125\)
\(625\)
-
-
-
-
-
-
7n
\(7\)
\(49\)
\(343\)
 -
 -
 -
 -
 -
 -
 -
 
Example:
Calculate 7225.
 
The first step is always exponentiation.
 
72=49;25=32.
 
Substituting the found values, we obtain:
 
7225=4932=17.
Consider examples of degrees with negative bases:
32=33=9;33=333=27;34=3333=81.
 
Important!
An even degree of a negative number is positive; an odd one is negative.