Theory:

Rules for comparing two integers
1. A positive number is always greater than the negative number.
 
2. (i) When we compare two positive integers, the integer with more number of digits is always greater than the integer with less number of digits.
   (ii) If two positive integers have the same number of digits, then compare the left-most digit of two numbers until we come across unequal digits.
 
3. When we compare two negative integers, the greater number with a negative sign is the smallest of two negative integers.
 
4. Negative numbers are always lesser than zero.
 
5. Positive numbers are always greater than zero.
Example:
1. Comparing positive and negative integer.
 
(i) \(-8\) \(<\) \(8\).
(ii) \(16\) \(>\) \(-2\).
(iii) \(-20\) \(<\) \(10\).
 
 
2. Comparing two positive integers with a different number of digits.
 
(i) \(156\) \(>\) \(84\).
(ii) \(1\) \(<\) \(15\).
(iii) \(142\) \(>\) \(8\).
 
 
3. Comparing two positive integers with the same number of digits.
 
(i) \(56\) \(>\) \(55\).
(ii) \(23\) \(<\) \(32\).
(iii) \(46\) \(<\) \(69\).
 
 
4. Comparing two negative integers.
 
(i) \(-100\) \(>\) \(-1000\).
(ii) \(-56\) \(<\) \(-14\).
(iii) \(-1\) \(>\) \(-999\).
 
 
5. Comparing negative integer with zero.
 
(i) \(-96\) \(<\) \(0\).
(ii) \(-1\) \(<\) \(0\).
(iii) \(0\) \(>\) \(-1000\).
 
 
6. Comparing positive integer with zero.
 
(i) \(66\) \(>\) \(0\).
(ii) \(0\) \(<\) \(43\).
(iii) \(1\) \(>\) \(0\).