UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more**1**. If the date of birth of Rahul is \(14/04/2005\), what is his age on \(04/02/2021\)?

Date of birth \(=\) \(12/04/2005\)

To find the age on date \(=\) \(09/02/2021\)

**Rahul's age on date**\(09/02/2021\)

**is**\(15\)

**years**\(9\)

**months**\(20\)

**days**.

**2**. If \(15^{\text{th}}\) of August \(2020\) is Saturday, what is the day on \(10^{\text{th}}\) January \(2021\).

**Solution**:

**Given**: \(15^{\text{th}}\) of August \(2020\) is Saturday.

Number of days in August \(=\) \(31-14 =17\)

Number of days in September \(=\) \(30\)

Number of days in October \(=\) \(31\)

Number of days in November \(=\) \(30\)

Number of days in December \(=\) \(31\)

Number of days in January \(=\) \(10- 1 = 9\)

Total number of days \(=\) \(17 + 30 + 31 + 30 + 31 + 9 = 148\)

A week has \(7\) days.

So, divide \(148\) days by \(7\) days.

$\begin{array}{l}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}21\\ 7\overline{)148}\\ \underset{\xaf}{\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}14\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}}\\ \phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}8\\ \underset{\xaf}{\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}7\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}}\\ \underset{\xaf}{\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}1\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}}\phantom{\rule{0.147em}{0ex}}\end{array}$

\(148\) days \(=\) \(21\) weeks \(+\) \(1\) day

So, the required day is \(1\) day after Saturday.

**Therefore**, \(10^{\text{th}}\)

**January**\(2021\)

**is**

**Sunday**.

Important!

If the remainder is:

\(0\) - Same given day

\(1\) - One day after the given day

\(2\) - Two days after the given day

\(3\) - Three days after the given day

\(4\) - Four days after the given day

\(5\) - Five days after the given day

\(6\) - Six days after the given day