PUMPA - SMART LEARNING

எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்

Book Free Demo
• Integers are the set of positive and negative numbers and zero.
• Integers is nothing but a whole number with negative numbers.
• Usually for better understanding integers are represented in a number line.
• Negative numbers will be on the left side of the number line, and positive numbers will be on the right side of  the number line.
Example:
The examples of negative integers are $$-1$$, $$-2$$, $$-2199$$.

The examples of positive integers are $$1$$, $$38$$, $$48$$, $$122$$.

The number $$0$$ is neither negative nor positive.
Negative numbers are always lesser than zero and positive numbers.
$\begin{array}{l}1\right)\phantom{\rule{0.147em}{0ex}}-3<0\\ 2\right)\phantom{\rule{0.147em}{0ex}}-311<0\\ 3\right)\phantom{\rule{0.147em}{0ex}}210>-51000\\ 4\right)\phantom{\rule{0.147em}{0ex}}-200<500\end{array}$

Reflection of a number:
Reflection of a number will have the same absolute value as that number but with a different sign.
Reflection of a number will be $$=-($$absolute value of the number$$)$$
Example:
Reflection of $$-1$$ is $$-(-1) = +1$$

Reflection of $$20$$ is $$-20$$
The distance between the positive number and zero in a number line will be equal to the distance between the reflection of the same negative number and zero.
Distance between $$(-x)$$ and $$0$$ in number line $$=$$ Distance between $$x$$ and $$0$$ in a number line.
Example:
Let us take a number $$+1$$ its distance in the number line from $$0$$ is $$1$$.

Reflection of $$+1$$ will be $$-(1)$$ and its distance in the number line from $$0$$ is also $$1$$.

Distance between $$-20$$ and $$0$$ is $$20 =$$ Distance between $$20$$ and $$0$$.
Important!
Numbers with decimals ($$0.21$$, $$2.35$$), irrational numbers $$π≈3.14$$, square roots - $$\sqrt{2}$$, $$\sqrt{3}$$ are not integers.