PUMPA - THE SMART LEARNING APP

Take a 10 minutes test to understand your learning levels and get personalised training plan!

Download now on Google Play
காரணிப்படுத்துதல்:
 
இது, பெருக்களின் திருப்புகைச் செயல்பாடு ஆகும்.
Example:
\(x+1\) மற்றும் \(x+2\) என்ற காரணிகளை பெருக்க இருபடிக் கோவை கிடைக்கும்.
 
அதாவது, \(x+1\) \(\cdot\) \(x+2\) \(=\) \(x^2 + x + 2x + 2\)
 
\(=\) \(x^2 + 3x + 2\)
 
\(x^2 + 3x + 2\) இன் காரணிகள்  \(x+1\) மற்றும் \(x+2\).
காரணிப்படுத்துதலின் வகைகள்:
காரணிப்படுத்துதலில் இரு வழிமுறைகள் உள்ளன
  • பொதுவான காரணிமுறை
Example:
காரணிப்படுத்துக: \(ax^2 + bx\).
 
விடை:
 
\(x\) என்பது \(ax^2 + bx\) இன் பொதுவான காரணி ஆகும்.
 
\(x\) ஐப் பொதுவாக எடுக்கக் கிடைப்பது \(ax^2 + bx\).
 
\(ax^2 + bx\) \(=\) \(x(ax + b)\)
 
எனவே, தேவையான காரணிகள் \(ax^2 + bx\), \(x\) மற்றும் \(ax + b\).
  • குழுவாகப் பிரித்தல்
Example:
காரணிப்படுத்துக: \(ax + a + bx + b\).
 
விடை:
 
\(ax + c + bx + b\) என்பதைக் குழுவாக எழுதக் கிடைப்பது,
 
\(ax + a + bx + b\) \(=\) \((ax + a) + (bx + b)\)
 
\(=\) \(a(x + 1) + b(x + 1)\)
 
பொதுவான காரணியை வெளியில் எடுக்கக் கிடைப்பது,
 
\(ax + a + bx + b\) \(=\) \((x + 1)(a + b)\)
 
\(ax + a + bx + b\) இன் காரணிகள் \((x + 1)\) மற்றும் \((a + b)\).